Investigating the Relationship between Motor Vehicle Speed and Active School Transportation at Elementary Schools in Calgary and Toronto

February 3, 2020
CHASE Monthly Webinar Series
Presenter: Rebecca Ling, MPH
Coauthors: Linda Rothman, Brent Hagel, Colin Macarthur, Meghan Winters, Tony Churchill, Tate HubkaRao, Liraz Fridman

Alison Macpherson, Marie- Soleil Cloutier, Andrew Howard

Background

- Majority of children and youth do not meet physical activity recommendations (Katzmaryk, 2000)
- Promote active school transportation as a means of physical activity
- Pedestrian-related injuries account for 12\% of all injury-related deaths in children under 14 years old (Canadian Council of Motor Transport Administrators, 2013)

Background

Speed and Injury Relationship

- 10% risk of fatality for pedestrian struck by car travelling at $30 \mathrm{~km} / \mathrm{h}$ or below
- At $50 \mathrm{~km} / \mathrm{h}$, risk increases exponentially to 80%

Literature Review

- In study by Oluyomi (2014), parents who reported that traffic safety was not a problem were more likely to report that child walks to school compared to parents who reported that traffic safety was always a problem (OR=2.86, 95\% CI: 1.64, 4.99)
- Parents' perception of traffic safety at the school is associated with mode of transportation (Oluyomi, 2014; Rothman, 2018; Wilson, 2018)
- Self-reported measures of traffic safety and/or school travel

Child Active-Transportation Safety and the Environment (CHASE) Study

- Objective - to examine the built environment and child and adolescent active transportation to schools within and across multiple large Canadian urban centres
- 552 schools observed in 7 cities across Canada, including Vancouver, Surrey, Calgary, Peel, Toronto, Montreal and Laval

Objective

To investigate the relationship between vehicle speeds in front of schools and active school transportation

- To examine this relationship using 3 different speed definitions

1. Vehicles travelling over $30 \mathrm{~km} / \mathrm{h}$
2. Vehicles travelling over the posted speed limit
3. $85^{\text {th }}$ percentile speed

- To examine the influence of the built environment on vehicle speeds and active school transportation

School Sample

Calgary (n=46)

Toronto (n=42)

- 46 of 125 CHASE schools
- Randomly selected
- Grades JK-8
- 26 of 75 CHASE schools
- 16 schools from another study
- Grades JK-8

Vancouver, Surrey, Peel, Montreal and Laval schools were not included because vehicle speed data were not available

Maps of Schools

Calgary: 46 schools
Toronto: 42 schools

Data
School Travel Counts
-Conducted in May and June, 2018 by trained university student observers

- 25 mins during morning drop-off period - 20 mins before and 5 mins after the bell

Data
 Vehicle Speeds

Calgary

Individual vehicle data by Grouped data by 15 mins time and speed

1 to 9 days

Toronto

 intervals and speed bins(1)
24 hours, for 3 consecutive days

Weekends, holidays or data collected for <1 day

None

Data
 Vehicle Speed Times

Vehicle speeds assessed during School Activity Times operationally defined from 7:30 AM to 6 PM

Calgary School Zones

- Operating speed limit changes to $30 \mathrm{~km} / \mathrm{h}$ between 7:30 AM and 9:00 PM

Toronto School
Zones

- Speed limit varies between $30 \mathrm{~km} / \mathrm{h}$ and $60 \mathrm{~km} / \mathrm{h}$ depending on the type of roadway

Data

School Environment

- Using Google Street View, within 200m of the main entrance, we captured:
- Speed limits, road type and presence of sidewalks, cycling infrastructure, and pedestrian crossovers
-From school observations data, the presence of school crossing guards was collected.

Analysis

- Outcome: Proportion of students using active school transportation (AST)
- Exposure: Vehicle speed metrics, defined as

1. Proportion of vehicles over $30 \mathrm{~km} / \mathrm{h}$ (\%)
2. Proportion of vehicles over speed limit (\%)
3. 85 th percentile speeds $(\mathrm{km} / \mathrm{h})$

Analysis

-School Environment Covariates:
-Cycling infrastructure (present vs absent)

- Pedestrian crossovers (present vs absent)
- Crossing guard (present vs absent)
-Road classification (local vs arterial)
-Beta regression models, stratified by city
- Reported as odds ratios with 95\% confidence intervals

School Environment Characteristics

Table 1: School Environment - Roadway Characteristics

CHARACTERISTICS	Calgary, N=46 $\mathbf{n}(\%)$	Toronto, N=42 $\mathbf{n}(\%)$
Road type:		
Local/collector	$44(96 \%)$	$32(76 \%)$
Minor/major arterial	$2(4 \%)$	$10(24 \%)$
Speed limit:		
$30 \mathrm{~km} / \mathrm{h}$	$46(100 \% *)$	$11(26 \%)$
$40 \mathrm{~km} / \mathrm{h}$	$0(0 \%)$	$21(50 \%)$
$50 \mathrm{~km} / \mathrm{h}$	$0(0 \%)$	$7(17 \%)$
$60 \mathrm{~km} / \mathrm{h}$	$0(0 \%)$	$3(7 \%)$

* All schools in Calgary set 30 km/h zones during school activity times

School Environment Characteristics

Table 2: School Environment - Walkability and Safety Characteristics

CHARACTERISTICS	Calgary, N=46 $\mathbf{n}(\%)$	Toronto, N=42 $\mathbf{n}(\%)$
Sidewalk (\%)	$3(6 \%)$	$2(5 \%)$
One side	$43(94 \%)$	$40(95 \%)$
Both sides	$4(9 \%)$	$2(5 \%)$
Presence of cycling infrastructure (\%)	$27(59 \%)$	$28(67 \%)$
Presence of crossing guards (\%)	$10(22 \%)$	$1(2 \%)$
Child only	$4(9 \%)$	
Adult only		
Both child and adult	$13(28 \%)$	$34(57 \%)$
Presence of pedestrian crossovers (\%)	$40(87 \%)$	$31(74 \%)$

Results
 Active School Transportation

Calgary Average = 44\%

Results
 85 ${ }^{\text {th }}$ Percentile Speeds

Calgary - 85th Percentile Speeds by
School

Speed limits marked by dotted lines
Calgary
Average $85^{\text {th }}$ Percentile Speed $=35 \mathrm{~km} / \mathrm{h}$

Toronto - 85th Percentile Speeds by School

Toronto
Average $85^{\text {th }}$ Percentile Speed $=47_{8} \mathrm{~km} / \mathrm{h}$

Results - AST and Vehicle Speeds

Calgary Schools - Relationship
between AST and $85^{\text {th }}$ Percentile
Speed

Toronto Schools - Relationship between AST and $85^{\text {th }}$ Percentile Speed

Calgary
 AST and Vehicle Speed Analysis

Table 3: Results from AST Models for Calgary

Outcome: Proportion of AST \begin{tabular}{l}
Unadjusted OR

$(95 \% \mathrm{CI})$

Adjusted OR

$(95 \% \mathrm{CI})$
\end{tabular}

Speed Definitions

Speeding over $30 \mathrm{~km} / \mathrm{h}$	0.97	0.98^{a}
per 10% of vehicles	$(0.88,1.08)$	$(0.88,1.09)$
Speeding over speed limit	0.97	0.97^{a}
per 10% of vehicles	$(0.88,1.08)$	$(0.87,1.08)$
$85^{\text {th }}$ percentile speed	1.01	1.00^{b}
per $1 \mathrm{~km} / \mathrm{h}$	$(0.94,1.08)$	$(0.94,1.07)$

OR: Odds Ratio, CI: Confidence Intervals
${ }^{\text {a Adjusted for cycling infrastructure, crossing guard, pedestrian crossover, road type }}$
${ }^{\text {b }}$ Adjusted for cycling infrastructure, crossing guard and pedestrian crossover

Toronto
 AST and Vehicle Speed Analysis

Table 4: Results from AST Models for Toronto

Outcome: Proportion of AST	Unadjusted OR $(95 \% \mathrm{CI})$	Adjusted OR $(95 \% \mathrm{CI})$
Speed Definitions		
Speeding over $30 \mathrm{~km} / \mathrm{h}$	0.90	$0.90^{\text {a }}$
per 10% of vehicles	$(0.80,1.01)$	$(0.77,1.04)$
Speeding over speed limit	$\mathbf{0 . 9 0}$	$\mathbf{0 . 9 0 ^ { \text { a } }}$
per 10% of vehicles	$\mathbf{(0 . 8 1 , 0 . 9 9)}$	$\mathbf{(0 . 8 2 , 0 . 9 9)}$
$85^{\text {th }}$ percentile speed	$\mathbf{0 . 9 7}$	$\mathbf{0 . 9 7 ^ { \text { b } }}$
per $1 \mathrm{~km} / \mathrm{h}$	$\mathbf{(0 . 9 5 , \mathbf { 1 . 0 0) }}$	$\mathbf{(0 . 9 5 , \mathbf { 0 . 9 9) }}$

OR: Odds Ratio, CI: Confidence Intervals
${ }^{\text {a }}$ Adjusted for cycling infrastructure, crossing guard, pedestrian crossover, road type
${ }^{\text {b }}$ Adjusted for cycling infrastructure, crossing guard and pedestrian crossover

AST and Vehicle Speed Adjusted Analysis

- In Toronto schools, the odds of children using AST significantly decrease by 3% for every 1 km/h increase in 85th percentile speeds (adjusted OR=0.97, 95\% CI: 0.95, 0.99)
- In Calgary schools, there is no significant relationship observed between AST and 85th percentile speeds (adjusted OR=1.00, 95\% CI: 0.94, 1.07)

School Environment Effects

Table 4: Adjusted AST Models with School Environment Covariates

	Calgary Schools	Toronto Schools
Outcome: Proportion of AST	Adjusted OR (95\% CI)	Adjusted OR (95\% CI)
Exposure: 85 $1 \mathrm{~km} / \mathrm{h}$ percentile speed per	$1.00(0.94,1.07)$	$\mathbf{0 . 9 7}(\mathbf{0 . 9 5 , 0 . 9 9)}$
School Environment Variables		
Pedestrian crossover vs none (ref)	$0.89(0.54,1.46)$	$1.26(0.76,2.10)$
Cycling infrastructure vs none (ref)	$1.29(0.73,2.25)$	$2.97(0.97,9.03)$
Crossing guard vs none (ref)	$0.88(0.62,1.23)$	$1.43(0.90,2.26)$
Arterial roads vs local roads (ref) ${ }^{*}$	---	---

*Road type was highly correlated with the $85^{\text {th }}$ percentile speed and was removed from the model

Discussion

-"High" vehicle speeds prevalent in front of schools

- $85^{\text {th }}$ percentile speeds: $35 \mathrm{~km} / \mathrm{h}$ in Calgary and $47 \mathrm{~km} / \mathrm{h}$ in Toronto
- Percentage of drivers over speed limits: 45\% in Calgary and 42% in Toronto
- In Toronto, 72% of vehicles going over 30 km / h, where speed limits range from 30 to $60 \mathrm{~km} / \mathrm{h}$

Discussion

-Differences in school travel between cities
-44\% AST in Calgary vs. 64\% AST in Toronto

- Observed significant relationship between AST and vehicle speeds in Toronto
- Consistent with previous studies that used self-reported measure for traffic safety (oluyomi, 2014; Rothman, 2018; Wilson, 2018)

Limitations

- Misclassification bias of AST, speeds and school environment covariates
- School sample size
- Selection bias in school criteria
-Confounding

Conclusion

- Almost 50\% of vehicles do not comply with speed limits in Calgary and Toronto school zones

- Need for targeted interventions at schools to reduce speeds
- Lower speed limits, speed cameras, police enforcement, physical traffic calming measures

KCHASEOOTO

Brent E. Hagel, Andrew Howard, Alison Macpherson, Pamela Fuselli

 University of Calgary, Hospital for Sick Children, York University, ParachuteCo-investigators

- Alberto Nettel-Aguirre, UofC
- Carolyn Emery, UofC
- Colin Macarthur, SickKids
- Donald Voaklander, UofA
- Gavin McCormack, UofC
- Gregory Morrow, UC Berkley
- Guy Faulkner, UBC
- Ian Pike, UBC
- Juan Torres, UdM
- Kathy Belton, UofA
- Kelly Russell, UofM
- Linda Rothman, Ryerson University
- Liz Owens, Alberta Transportation
- Marie-Soleil Cloutier, INRS
- Meghan Winters, SFU
- Ron Buliung, UofT
- Sarah Richmond, Public Health Ontario
- Tracey Ma, George Institute

Research Coordinators

- Tona Pitt, UofC (National)
- Tate Hubka, UofC
- Janet Aucoin, UofC
- Moreno Zanotto, SFU
- Rebecca Ling, SickKids

TCHASEsio

CHild Active-Transportation Safety and the Environment

This study was supported by the CIHR Team Grant: Environments and Health: Intersectoral Prevention Research, The Built Environment and Active Transportation Safety in Children and Youth \#IP2-150706.

This study was conducted by the CHASE (Child Active Transportation Safety and the Environment) group of investigators and their partners. We would like to thank the study participants for generously providing their time, as well as all the members of CHASE, including; investigators, collaborators, partners, staff, and trainees.

Thank you

Parachute

References

Katzmarzyk, P. T., Gledhill, N., \& Shephard, R. J. (2000). The economic burden of physical inactivity in Canada. CMAJ : Canadian Medical Association Journal, 163(11), 1435-1440.
Linda Rothman, Alison K. Macpherson, Timothy Ross, Ron N. Buliung. (2018). The decline in active school transportation (AST): A systematic review of the factors related to AST and changes in school transport over time in North America, Preventive Medicine, 111, 314-322. https://doi.org/10.1016/j.ypmed.2017.11.018.
Oluyomi, A. O., Lee, C., Nehme, E., Dowdy, D., Ory, M. G., \& Hoelscher, D. M. (2014). Parental safety concerns and active school commute: correlates across multiple domains in the home-toschool journey. International Journal of Behavioral Nutrition and Physical Activity, 11(1), 32. https://doi.org/10.1186/1479-5868-11-32
Pasanen E. \& Salminvaara H. Driving speeds and pedestrian safety in the city of Helsinki. Traffic Injury and Control 1993; 34 (6): 308-310.
Canadian Council of Motor Transport Administrators. (2013). Countermeasures to Improve Pedestrian Safety in Canada. Accessed from https://ccmta.ca/images/publications/pdf/CCMTA Pedestrian_Report Eng_FINAL.pdf. Date accessed January 282020.
Wilson, K., Clark, A. F., \& Gilliland, J. A. (2018). Understanding child and parent perceptions of barriers influencing children's active school travel. BMC Public Health, 18(1), 1053. https://doi.org/10.1186/s12889-018-5874-y

